
Background

Performance Testing: Enhancing 
Performance for University 
Attendance System

The university's application required rigorous performance and scalability validation for its Attendance Regis-

tration System to ensure seamless integration with the Student Management System. This testing aimed to 

confirm the application could handle high volumes of simultaneous user access to APIs without compromis-

ing responsiveness. Additionally, integration and data transfer between the university's systems and the 

Student Records System were thoroughly tested to ensure reliability and efficiency.

Key Aspects of API 
Performance Testing

Solution

Latency: Measured the time taken for 

requests to travel between the client 

and server.

Throughput: Assessed the number of 

transactions processed within a 

specific timeframe.

Scalability: Evaluated system perfor-

mance under increasing user loads.

Response Time: Monitored the speed 

of API responses.

Error Rate: Tracked the percentage of 

failed requests.

Resource Utilization: Analyzed CPU 

and memory usage during high-traffic 

scenariosfailed requests.

Results

© 2025 Gigs-Tech Solutions Private Limited, All Rights Reserved.�info@gigs-tech.com

Conclusion
The performance tests provided valuable insights into the system's capacity and reliability, ensuring the Attendance Registra-
tion System could handle real-world demands. The iterative testing and optimization process enhanced system robustness 
and allowed the reuse of test scripts for ongoing improvements. Upon project completion, all test assets were delivered to the 
university to facilitate future performance validations.

Collaboration with University Teams: 

Gathered detailed API information, 

including endpoints, data types, formats, 

and request frequencies for both GET 

and POST requests.

Detailed Test Plan Creation: Document-

ed testing scope, expected data volumes, 

dependencies, and test profiles.

Walkthrough and Feedback: Conducted a 

review of the test plan with stakeholders, 

made necessary adjustments, and 

ensured alignment before test prepara-

tion.

Scenario Execution: Tested combina-

tions of API requests at varying traffic 

levels (1,000–3,000 requests per hour) to 

The system successfully 

handled up to 2,000 API 

requests per hour with stable 

CPU and memory usage.

Beyond this limit, issues such 

as connection timeouts and 

increased CPU load were 

identified. Recommendations 

included capping traffic at 42 

requests per second for 

optimal performance.

Another API maintained 

functionality with up to 1,200 

requests per hour. It was 

advised to limit these requests 

to 20 per second to prevent 


